RESISTENCIA Y RIGIDEZ DEL MATERIAL

 RESISTENCIA Y RIGIDEZ DEL MATERIAL 


La probeta de ensayo estándar se usa para obtener una variedad de características y resistencias de los materiales que se emplean en el diseño. En la figura 2-1 se ilustra una probeta para prueba de tensión típica y sus dimensiones características.1 El diámetro original d0 y la longitud calibrada l0, que se usan para medir las deflexiones, se registran antes de comenzar la prueba. Después, la probeta se monta en la máquina de pruebas y se carga lentamente en tensión mientras se observan la carga P y la deflexión. La carga se convierte en esfuerzo mediante la fórmula.




La deflexión o extensión de la longitud calibrada, está dada por l – l0 donde l es la longitud calibrada correspondiente a la carga P. La deformación unitaria normal se calcula a partir de


A la conclusión de la prueba, o durante ella, se grafican los resultados como un diagrama de esfuerzo-deformación unitaria. En la figura 2-2 se muestran diagramas típicos de esfuerzodeformación unitaria de materiales dúctiles y frágiles. Los materiales dúctiles se deforman mucho más que los materiales frágiles.

El punto pl de la figura 2-2a) se llama límite de proporcionalidad. Éste es el punto en el que la curva comienza a desviarse de una línea recta. No podrá observarse ninguna deformación en la probeta si la carga es retirada en ese punto. En el rango lineal, la relación uniaxial esfuerzo-deformación unitaria está dada por la ley de Hooke como


donde la constante de proporcionalidad E, la pendiente de la parte lineal de la curva de esfuerzo-deformación unitaria, se llama módulo de Young o módulo de elasticidad. E es una medida de la rigidez de un material, y como la deformación unitaria no tiene dimensión, las unidades de E son las mismas del esfuerzo. Por ejemplo, el acero tiene un módulo de elasticidad de alrededor de 30 Mpsi (207 GPa) sin que importe el tratamiento térmico, el contenido de carbono o la aleación. El acero inoxidable tiene un módulo de alrededor de 27.5 Mpsi (190 GPa). 

El punto el en la figura 2-2 se llama límite elástico. Si la probeta se carga más allá de este punto, se dice que la deformación es plástica y que el material tomará una deformación permanente cuando se retire la carga. Entre pl y el, el diagrama no es una línea recta perfecta, aun cuando la probeta sea elástica. 

Durante la prueba de tensión, muchos materiales llegan a un punto en el que la deformación unitaria comienza a crecer muy rápidamente sin que se observe un incremento correspondiente en el esfuerzo. Éste se denomina punto de fluencia. No todos los materiales tienen un punto de fluencia obvio, en especial los materiales frágiles. Por esta razón, a menudo la resistencia a la fluencia Sy se define mediante un método de corrimiento como se muestra en la figura 2-2, donde la línea ay se dibuja en la pendiente E. El punto a corresponde a una cantidad definida o establecida de deformación unitaria, usualmente 0.2 por ciento de la longitud calibrada original ( 0.002), aunque en ocasiones se usa también 0.01, 0.1 y 0.5por ciento. 

La resistencia última o de tensión, Su o Sut corresponde al punto u en la figura 2-2 y es el esfuerzo máximo alcanzado en el diagrama de esfuerzo-deformación.2 Como se muestra en la figura 2-2a), algunos materiales exhiben una tendencia descendente después de alcanzar el máximo esfuerzo y se fracturan en el punto f del diagrama. Otros, como algunos de los hierros fundidos y aceros de alta resistencia, se fracturan mientras el trazo de esfuerzo-deformación aún se está elevando, como se muestra en la figura 2-2b), donde los puntos u y f son idénticos. 

Como se observó en la sección 1-9, la resistencia, como se usa en este libro, es una propiedad interna de un material o de un elemento mecánico, por la selección de un material particular, un proceso o ambos. Por ejemplo, la resistencia de una varilla de conexión en una ubicación crítica en la geometría y condición de uso, es la misma sin que importe que sea un elemento en una máquina en operación o si espera en una mesa de trabajo para ser ensamblada con otras partes. Por otro lado, el esfuerzo es algo que ocurre en una pieza, por lo general como resultado de ser ensamblada en una máquina y después recibir una carga. Sin embargo, hay esfuerzos que pueden incorporarse a una parte mediante su procesamiento o manejo. Por ejemplo, el picado con perdigones produce esfuerzo de compresión en la superficie exterior de una parte y también mejora la resistencia a la fatiga de la parte. Por lo tanto, en este libro se tendrá cuidado en distinguir entre resistencia designada por S y el esfuerzo, que se representa mediante o . 

Los diagramas de la figura 2-2 se llaman diagramas de esfuerzo-deformación unitaria de ingeniería porque los esfuerzos y deformaciones calculadas en las ecuaciones (2-1) y (2-2) no son valores verdaderos. El esfuerzo calculado en la ecuación (2-1) se basa en el área original antes de aplicar la carga. En realidad, a medida que se aplica la carga el área se reduce de manera que el esfuerzo real o verdadero es mayor que el esfuerzo de ingeniería. Para obtener el esfuerzo verdadero del diagrama deben medirse la carga y el área de la sección transversal de manera simultánea durante la prueba. En la figura 2-2a) se representa un material dúctil en el cual el esfuerzo parece decrecer de los puntos u a f. Lo típico es que más allá del punto u la probeta comienza a “adelgazar” en una ubicación de debilidad donde el área se reduce drásticamente, como se muestra en la figura 2-3. Por esta razón, el esfuerzo verdadero es mucho más alto que el esfuerzo de ingeniería en la sección adelgazada. 

La deformación de ingeniería dada por la ecuación (2-2) se basa en el cambio neto de longitud a partir de la longitud original. Al graficar el diagrama de esfuerzo-deformación unitaria verdadera, se acostumbra usar un término llamado deformación unitaria verdadera o, algunas veces, deformación unitaria logarítmica. La deformación unitaria verdadera es la suma de las elongaciones incrementales divididas entre la longitud calibrada actual a la carga P, o


donde el símbolo se usa para representar la deformación unitaria verdadera. La característica más importante de un diagrama de esfuerzo-deformación unitaria verdadera (figura 2-4) es el incremento continuo del esfuerzo verdadero, hasta fracturarse. Por lo tanto, como se muestra en la figura 2-4, el esfuerzo de fractura verdadero f es mayor que el esfuerzo último verdadero u. Compare esto con la figura 2-2a), donde la resistencia a la fractura de ingeniería Sf es menor que el esfuerzo último de ingeniería Su. 

Las pruebas de compresión son más difíciles de realizar y la geometría de las probetas difiere de la geometría de las que se utilizan en las pruebas de tensión. La razón es que la muestra puede pandearse durante la prueba o puede ser difícil hacer una equitativa distribución de los esfuerzos. Se presentan otras dificultades porque los materiales dúctiles se pandean después del punto de fluencia. Sin embargo, los resultados también pueden graficarse en un diagrama de esfuerzo-deformación unitaria y aplicarse las mismas definiciones de resistencia que se usaron en las pruebas de tensión. En el caso de la mayoría de los materiales dúctiles, las resistencias compresivas son casi las mismas que las resistencias a la tensión. Sin embargo, cuando ocurren diferencias sustanciales entre las resistencias a la tensión y a la compresión,


como es el caso con los hierros fundidos, las resistencias a la tensión y a la compresión debe establecerse por separado, Sut, Suc, donde Suc se reporta como una cantidad positiva. 

Las resistencias a la torsión se encuentran torciendo barras circulares y registrando el par de torsión y el ángulo de giro. Después se grafican los resultados como un diagrama par de torsión-giro. Los esfuerzos cortantes en la probeta son lineales con respecto a la ubicación radial, donde cero es el centro de la pieza y el máximo en el radio exterior r (vea el capítulo 3). El esfuerzo cortante máximo máx se relaciona con el ángulo de giro mediante



define el módulo de rotura de la prueba de torsión. Observe que es incorrecto llamar a Ssu la resistencia a la torsión última, dado que la región más externa de la barra está en un estado plástico con el par de torsión Tu y que la distribución de esfuerzo ya no es lineal. 

Todos los esfuerzos y resistencias definidas por el diagrama esfuerzo-deformación unitaria de la figura 2-2 y diagramas similares se conocen específicamente como esfuerzos y resistencias de ingeniería y esfuerzos y resistencias nominales. Éstos son los valores que se usan normalmente en todos los cálculos de ingeniería. Las expresiones de ingeniería y nominal se usan aquí para resaltar que los esfuerzos se calculan mediante el uso del área original o área de la sección transversal sin esfuerzo de la pieza. En este libro se usarán estos modificadores sólo cuando se desee específicamente destacar esta distinción. 

Además de proporcionar los valores de resistencia para un material, el diagrama de esfuerzo-deformación da una percepción de las características de absorción de energía que tiene ese material. Lo anterior es así porque el diagrama esfuerzo-deformación involucra tanto a las cargas como a las deflexiones, que están directamente relacionadas con la energía. 

La capacidad de un material para absorber energía dentro de su rango elástico se llama re siliencia. El módulo de resiliencia uR de un material se define como la energía absorbida por unidad de volumen sin deformación permanente, y es igual al área bajo la curva de esfuerzodeformación hasta el límite elástico. Casi siempre, el límite elástico se aproxima mediante el punto de fluencia, puesto que es más fácil de determinar, se tiene  


Las unidades de la tenacidad y la resiliencia son de energía por unidad de volumen (lbf . pulg/pulg3 o J/m3 ), que son numéricamente equivalentes a psi o Pa. Estas definiciones de tenacidad y resiliencia suponen tasas de deformación bajas que son adecuadas para obtener el diagrama de esfuerzo-deformación. Para tasas de deformación mayores, vea la sección 2-5 de las propiedades de impacto.



Comentarios