TENSIÓN DE VAPOR
Las moléculas de los líquidos se mueven en todas las direcciones y con todas las velocidades posibles. Solo las moléculas que posean una energía cinética mayor que las fuerzas de atracción podrán escapar del líquido, produciéndose su evaporación. Las moléculas escapadas quedan sobre la superficie libre del líquido y contribuyen a aumentar la presión del gas exterior con una presión parcial que se denomina tensión de vapor. Esta tensión de vapor irá aumentando hasta que el número de moléculas que entran en el líquido se iguale con las que salen, estableciéndose un equilibrio entre el liquido y su tensión de vapor, que se conoce como tensión máxima de saturación (tms). La tensión máxima de saturación varía en función de la temperatura y la naturaleza del líquido.Cuanto menor sea la presión a que está sometido un líquido menor será la temperatura a la que se produce su vaporización, es decir, su temperatura de saturación, y viceversa: cuanto menor sea la temperatura del líquido menor será la presión de vaporización. Por ejemplo, a la presión atmosférica normal (1 atm) el agua hierve a 100ºC, pero si se somete el agua a la presión absoluta de 0.01 atm, herviría a 7ºC.
Si en algún lugar de la conducción la presión es menor que la tensión de vapor a esa temperatura, el líquido hierve. Si posteriormente la presión aumenta hasta ser mayor que la tensión de vapor, el líquido se condensa. La sucesión continuada de estos dos fenómenos producen vibraciones, contracciones y golpeteos que producen la corrosión de la conducción por cavitación, una de las mayores causas de avería en las instalaciones de bombeo. Se aprecian vibraciones en los manómetros y los daños se producen donde el gas pasa a líquido, como si se hubieran dado martillazos. La vena líquida disminuye al llevar una parte de gas, con lo que la sección disminuye a efectos prácticos, y con ella el caudal transportado.
Comentarios
Publicar un comentario