OPERACIONES CON MATERIALES PLÁSTICOS Y PROCESOS TECNOLÓGICOS CON MATERIALES PLÁSTICOS
Fabricación de material plástico
El primer paso en la fabricación de un plástico es la polimerización. Los dos métodos básicos de polimerización son la condensación y las reacciones de adición. Estos métodos pueden llevarse a cabo de varias maneras. En la polimerización en masa se polimeriza sólo el monómero, por lo general en una fase gaseosa o líquida, si bien se realizan también algunas polimerizaciones en estado sólido. Mediante la polimerización en solución se forma una emulsión que se coagula seguidamente. En la polimerización por interfase los monómeros se disuelven en dos líquidos inmiscibles y la polimerización tiene lugar en la interfaz entre los dos líquidos.
Con frecuencia se utilizan aditivos químicos para conseguir una propiedad determinada. Por ejemplo, los antioxidantes protegen el polímero de degradaciones químicas causadas por el oxígeno o el ozono. De una forma parecida, los estabilizadores ultravioleta lo protegen de la intemperie. Los plastificantes producen un polímero más flexible, los lubricantes reducen la fricción y los pigmentos colorean los plásticos. Algunas sustancias ignífugas y antiestáticas se utilizan también como aditivos.
Muchos plásticos se fabrican en forma de material compuesto, lo que implica la adición de algún material de refuerzo (normalmente fibras de vidrio o de carbono) a la matriz de la resina plástica. Los materiales compuestos tienen la resistencia y la estabilidad de los metales, pero por lo general son más ligeros. Las espumas plásticas, un material compuesto de plástico y gas, proporcionan una masa de gran tamaño pero muy ligera.
PROCESOS TECNOLÓGICOS CON MATERIALES PLÁSTICOS
Los procesos de manufactura para la obtención de productos finales en material plástico tiene origen en el mismo moldeado del barro y el vidrio, manejados estos en estado plástico. Luego del descubrimiento accidental de los sintéticos, con su ampliación como derivados del petróleo, esta industria hace su tecnología heredándola en gran medida de los procesos con los metales.
La siguiente tabla resume una organización de estos procesos en sus diferentes categorías.
Los tratamientos térmicos tienen la función de conformar, endurecer y normalizar los plásticos mediante operaciones de recocido, templado, etc.
La extrusión es un método en el cual un material plástico, calentado o sin calentar, es forzado a pasar por un orificio que le da forma y lo transforma en una pieza larga de sección transversal constante. La laminación consiste en la unión de dos o más capas de uno o varios materiales. Puede ser cruzada o paralela; en la primera, algunas de las capas del material están orientadas aproximadamente paralelas con respecto al grano o a la dirección más resistente a la tracción.
La soldadura es la unión de dos o más piezas por fusión del material de la pieza situada en las proximidades de la unión, con la aportación de mas material plástico (por ejemplo, procedente de una varilla) o sin ella. La soldadura se efectúa moderadamente con sopletes eléctricos de alta frecuencia.
La transformación es la manufactura de los productos plásticos a partir de semi - productos moldeados previamente, tales como varillas, tubos, planchas, perfiles extruidos de otras formas, mediante operaciones apropiadas, tales como taladrado, cortado, rascado, serrado, pulido, etc. La transformación comprende la unión de piezas de plásticos entre sí o con otros materiales por medios mecánicos, adhesivos u otros procedimientos.
MOLDEO POR INYECCIÓN
En ingeniería, el moldeo por inyección es un proceso semicontinuo que consiste en inyectar un polímero en estado fundido (o ahulado) en un molde cerrado a presión y frío, a través de un orificio pequeño llamado compuerta. En ese molde el material se solidifica, comenzando a cristalizar en polímeros semicristalinos. La pieza o parte final se obtiene al abrir el molde y sacar de la cavidad la pieza moldeada.
El moldeo por inyección es una técnica muy popular para la fabricación de artículos muy diferentes. Sólo en los Estados Unidos, la industria del plástico ha crecido a una tasa de 12% anual durante los últimos 25 años, y el principal proceso de transformación de plástico es el moldeo por inyección, seguido del de extrusión. Un ejemplo de productos fabricados por esta técnica son los famosos bloques interconectables LEGO y juguetes Playmobil, así como una gran cantidad de componentes de automóviles, componentes para aviones y naves espaciales.
Los polímeros han logrado sustituir otros materiales como son madera, metales, fibras naturales, cerámicas y hasta piedras preciosas; el moldeo por inyección es un proceso ambientalmente más favorable comparado con la fabricación de papel, la tala de árboles o cromados. Ya que no contamina el ambiente de forma directa, no emite gases ni desechos acuosos, con bajos niveles de ruido. Sin embargo, no todos los plásticos pueden ser reciclados y algunos susceptibles de ser reciclados son depositados en el ambiente, causando daños a la ecología.
La popularidad de este método se explica con la versatilidad de piezas que pueden fabricarse, la rapidez de fabricación, el diseño escalable desde procesos de prototipos rápidos, altos niveles de producción y bajos costos, alta o baja automatización según el costo de la pieza, geometrías muy complicadas que serían imposibles por otras técnicas, las piezas moldeadas requieren muy poco o nulo acabado pues son terminadas con la rugosidad de superficie deseada, color y transparencia u opacidad, buena tolerancia dimensional de piezas moldeadas con o sin insertos y con diferentes colores.
Principio del moldeo
El moldeo por inyección es una de las tecnologías de procesamiento de plástico más famosas, ya que representa un modo relativamente simple de fabricar componentes con formas geométricas de alta complejidad. Para ello se necesita una máquina de inyección que incluya un molde. En este último, se fabrica una cavidad cuya forma y tamaño son idénticas a las de la pieza que se desea obtener. La cavidad se llena con plástico fundido, el cual se solidifica, manteniendo la forma moldeada.
Los polímeros conservan su forma tridimensional cuando son enfriados por debajo de su Tg —y, por tanto, también de su temperatura de fusión para polímeros semicristalinos. Los polímeros amorfos, cuya temperatura útil es inferior a su Tg, se encuentran en un estado termodinámico de pseudoequilibrio. En ese estado, los movimientos de rotación y de relajación (desenredo de las cadenas) del polímero están altamente impedidos. Es por esta causa que, en ausencia de esfuerzos, se retiene la forma tridimensional. Los polímeros semicristalinos poseen, además, la característica de formar cristales. Estos cristales proporcionan estabilidad dimensional a la molécula, la cual también es —en la región cristalina— termodinámicamente estable. La entropía de las moléculas del plástico disminuye drásticamente debido al orden de las moléculas en los cristales.
Partes esenciales de una inyectora
PROCESO DE EXTRUSIÓN
La extrusión de polímeros es un proceso industrial, basado en el mismo principio de la extrusión general, sin embargo la ingeniería de polímeros ha desarrollado parámetros específicos para el plástico, de manera que se estudia este proceso aparte de la extrusión de metales u otros materiales.
El polímero fundido (o en estado ahulado) es forzado a pasar a través de un Dado también llamado boquilla, por medio del empuje generado por la acción giratoria de un husillo (tornillo de Arquímedes) que gira concéntricamente en una cámara a temperaturas controladas llamada cañón, con una separación milimétrica entre ambos elementos. El material polimérico es alimentado por medio de una tolva en un extremo de la máquina y debido a la acción de empuje se funde, fluye y mezcla en el cañón y se obtiene por el otro lado con un perfil geométrico preestablecido.
Extrusores de un usillo
Los extrusores más comunes utilizan un sólo husillo en el cañón. Este husillo tiene comúnmente una cuerda, pero puede tener también 2 y este forma canales en los huecos entre los hilos y el centro del husillo, manteniendo el mismo diámetro desde la parte externa del hilo en toda la longitud del husillo en el cañón.
La división más común para extrusores de un sólo husillo consiste en 4 zonas, desde la alimentación hasta la salida por el dado del material,
1. Zona de alimentación: En esta parte ocurre el transporte de gránulos sólidos y comienza la elevación de temperatura del material
2. Zona de compresión: En esta zona, los gránulos de polímero son comprimidos y están sujetos a fricción y esfuerzos cortantes, se logra una fusión efectiva
3. Zona de distribución: Aquí se homogeniza el material fundido y ocurren las mezclas.
4. Zona de mezcla: En esta parte que es opcional ocurre un mezclado intensivo de material, en muchos casos no se aconseja porque puede causar degradación del material.
Los husillos pueden tener también dentro de algunas de sus zonas principales elementos dispersivos y elementos distributivos.
Distribución: Logra que todos los materiales se encuentren igual proporción en la muestra Dispersión: Logra que los componentes no se aglomeren sino que formen partículas del menor tamaño posible.
Fusión del polímero
El polímero funde por acción mecánica en combinación con la elevación de su temperatura por medio de calentamiento del cañón. La acción mecánica incluye los esfuerzos de corte y el arrastre, que empuja el polímero hacia la boquilla e implica un incremento en la presión.
La primera fusión que se presenta en el sistema ocurre en la pared interna del cañón, en forma de una delgada película, resultado del incremento en la temperatura del material y posteriormente también debida a la fricción. Cuando esta película crece, es desprendida de la pared del cañón por el giro del husillo, en un movimiento de ida y vuelta y luego un barrido, formando un patrón semejante a un remolino, o rotatorio sin perder el arrastre final. Esto continúa hasta que se funde todo el polímero.
Fusión y arrastre: Si el material se adhiere al husillo y resbala sobre la pared del cañón, entonces el arrastre es cero, y el material gira con el husillo. Si en cambio, el material no resbala con la pared del cañón y resbala con el husillo, entonces el arrastre es máximo y el transporte de material ocurre.
En la realidad el polímero experimenta fricción tanto en la pared del cañón como en el husillo, las fuerzas de fricción determinan el arrastre que sufrirá el polímero.
El dado
El dado en el proceso de extrusión es análogo al molde en el proceso de moldeo por inyección, a través del dado fluye el polímero fuera del cañón de extrusión y gracias a éste toma el perfil deseado. El dado se considera como un consumidor de presión, ya que al terminar el husillo la presión es máxima, mientras que a la salida del dado la presión es igual a la presión atmosférica.
La presión alta que experimenta el polímero antes del dado, ayuda a que el proceso sea estable y continuo, sin embargo, el complejo diseño de los dados es responsable de esta estabilidad en su mayor parte.
El perfil del dado suele ser diferente del perfil deseado en el producto final, esto debido a la memoria que presentan los polímeros, esfuerzos residuales y orientación del flujo resultado del arrastre por el husillo.
Existen dados para tubos, para láminas y perfiles de complicadas geometrías, cada uno tiene características de diseño especiales que le permite al polímero adquirir su forma final evitando los esfuerzos residuales en la medida de lo posible.
Los dados para extruir polímeros consideran la principal diferencia entre materiales compuestos por macromoléculas y los de moléculas pequeñas, como metales. Los metales permiten ser procesados con esquinas y ángulos estrechos, en cambio los polímeros tienden a formar filos menos agudos debido a sus características moleculares, por ello es más eficiente el diseño de una geometría final con ángulos suaves o formas parabólicas e hiperbólicas.
PROCESO DE SOPLADO
El moldeo por soplado es responsable de una parte sustancial de la producción total de plásticos. En repetidas ocasiones se ha tratado en Plásticos Universales de estos temas desde el punto de vista técnico; por ello, lo que sigue es una simple recopilación de los sistemas utilizados y de sus aplicaciones más importantes.
La fabricación de cuerpos huecos presenta problemas casi insoslayables para la técnica de inyección de plásticos, que es la más extendida. Por ello, fuera de la técnica de moldeo rotacional que resulta lenta para la producción de las grandes cadencias necesarias para el moldeo de envases y otros productos similares, se ha acudido a tecnologías multi-fase, en las que se fabrica primero un material tubular mediante extrusión o inyección y luego se modifica su forma bajo temperatura mediante la inyección de aire en un molde hueco cerrado frío, solidificándose el plástico en su forma definitiva al contacto con sus paredes.
Extrusión para Soplado
El uso de la extrusión para producir el elemento tubular a partir del que se forma el cuerpo hueco permite un mejor aprovechamiento de las posibilidades de los materiales multicapa, con lo que se consiguen envases en que la pared está compuesta por capas de distintos materiales que otorgan las características diferenciadas de barrera, resistencia a la radiación UV, características mecánicas o coloración.
Las extrusoras para producir grandes capacidades, con peso superior a los 25-50 kg unitarios, suelen estar dotadas de acumuladores de extruido para producir la preforma de un modo mucho más rápido que el que permitiría el propio flujo del cabezal de extrusión, evitando que se descuelgue antes de quedar fijada por el pinzamiento del molde.
Asimismo es el principal sistema para la fabricación de envases con plásticos biodegradables, que pueden ser la respuesta de la industria a los problemas de residuos sólidos urbanos, ya que estos materiales permiten su incorporación a los vertederos. En resumen, aunque sea el método más antiguo, es probablemente el más versátil y continuará siendo imprescindible para un número de aplicaciones.
La inyección- estirado- soplado nació para dar una respuesta objetiva a la obtención de envases para bebidas carbónicas en materiales transparentes. Por sus características mecánicas, el poliéster termoplástico es el material más adecuado, pero al tratarse de un polímero cristalino era preciso un proceso con una gran rapidez de transformación y enfriamiento que permitiera evitar la formación de cristalitas durante el paso a la fase sólida.
Aplicaciones
Los plásticos tienen cada vez más aplicaciones en los sectores industriales y de consumo. Algunos ejemplos son:
Empaquetado
Una de las aplicaciones principales del plástico es el empaquetado. Se comercializa una buena cantidad de LDPE (polietileno de baja densidad) en forma de rollos de plásticos transparente para envoltorios. El polietileno de alta densidad (HDPE) se usa para películas plásticas más gruesas, como la que se emplea en las bolsas de basura. Se utilizan también en el empaquetado: el polipropileno, el poliestireno, el cloruro de polivinilo (PVC) y el cloruro de polivinilideno. Este último se usa en aplicaciones que requieren estanqueidad, ya que no permite el paso de gases (por ejemplo, el oxigeno) hacia dentro o hacia fuera del paquete. De la misma forma, el polipropileno es una buena barrera contra el vapor de agua; tiene aplicaciones domésticas y se emplea en forma de fibra para fabricar alfombras y sogas.
Construcción
La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetado descritos anteriormente. El HDPE se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de lámina como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.
Otras aplicaciones
Otros sectores industriales, en especial la fabricación de motores, dependen también de estas sustancias. Algunos plásticos muy resistentes se utilizan para fabricar piezas de motores, como colectores de toma de aire, tubos de combustible, botes de emisión, bombas de combustible y aparatos electrónicos. Muchas carrocerías de automóviles están hechas con plástico reforzado con fibra de vidrio.
Los plásticos se emplean también para fabricar carcasas para equipos de oficina, dispositivos electrónicos, accesorios pequeños y herramientas. Entre las aplicaciones del plástico en productos de consumo se encuentran los juguetes, las maletas y artículos deportivos.
Salud y riesgos para el entorno
Dado que los plásticos son relativamente inertes, los productos terminados no representan ningún peligro para el fabricante o el usuario. Sin embargo, se ha demostrado que algunos monómeros utilizados en la fabricación de plásticos producen cáncer. De igual forma, el benceno, una materia prima en la fabricación del nylon, es un carcinógeno. Los problemas de la industria del plástico son similares a los de la industria química en general.
La mayoría de los plásticos sintéticos no pueden ser degradados por el entorno. Al contrario que la madera, el papel, las fibras naturales o incluso el metal y el vidrio, no se oxidan ni se descomponen con el tiempo. Se han desarrollado algunos plásticos degradables, pero ninguno ha demostrado ser válido para las condiciones requeridas en la mayoría de los vertederos de basuras. En definitiva, la eliminación de los plásticos representa un problema medioambiental. El método más práctico para solucionar este problema es el reciclaje, que se utiliza, por ejemplo, con las botellas de bebidas gaseosas fabricadas con tereftalato de polietileno. En este caso, el reciclaje es un proceso bastante sencillo. Se están desarrollando soluciones más complejas para el tratamiento de los plásticos mezclados de la basura, que constituyen una parte muy visible, sí bien relativamente pequeña, de los residuos sólidos.
Comentarios
Publicar un comentario