PROPIEDADES DE LOS FLUIDOS MANUFACTURA

 PROPIEDADES DE LOS FLUIDOS MANUFACTURA


Los fluidos se comportan de manera muy diferente de los sólidos. Un fluido fluye; es decir, adopta la forma del envase que lo contiene. Un sólido no fluye; tiene una forma geométrica que es independiente del medio. Los fluidos incluyen a los líquidos y gases: en esta sección, el interés es para los primeros. Muchos procesos de manufactura se ejecutan en materiales que han pasado del estado sólido al líquido a través de calentamiento. Los metales son líquidos en el estado de fusión; el vidrio se forma en un estado caliente y muy fluido; y a los polímeros casi siempre se les moldea como fluidos espesos. 

Viscosidad Aunque el flujo es una característica que define a los fluidos, la tendencia a fluir varía de uno a otro. La viscosidad es la propiedad que determina que un fluido fluya. A grandes rasgos, la viscosidad se define como la resistencia al flujo que es característica de un fluido. Es una medida de la fricción interna que aparece cuando hay presentes gradientes de velocidad en el fluido, entre más viscoso es el fluido, mayor es la fricción interna y mayor la resistencia al flujo. El inverso de la viscosidad es la fluidez, es decir, la facilidad con que el fluido fluye. 

Con más precisión, la viscosidad se define respecto de un arreglo como el que se ilustra en la figura 3.17, en el que dos placas paralelas están separados por una distancia d. Una de ellas es estacionaria, mientras que la otra se mueve a velocidad v, y el espacio entre ellas está ocupado por un fluido. Al orientar estos parámetros en relación con un sistema de ejes coordenados, d está en la dirección del eje y y v en dirección del eje x. Al movimiento de la placa superior se opone la fuerza F que resulta de la acción de viscosidad cortante del fluido. Esta fuerza se reduce a un esfuerzo cortante si se divide F entre la superficie de la placa, A:



donde t = esfuerzo cortante, N/m2 o Pa (lb/in2 ). Este esfuerzo cortante se relaciona con la tasa de cortante, que se define como el cambio de la velocidad dv respecto de dy. Es decir,


donde g · = tasa de cortante, 1/s;dv = cambio incremental de la velocidad, m/s (in/s); y dy = cambio incremental de la distancia y, m (in). La viscosidad cortante es la propiedad del fluido que define la relación entre F/A y dv/dy; es decir,


donde h = una constante de proporcionalidad llamada coeficiente de viscosidad, Pa-s (lbs/in2 ). Si se reacomoda la ecuación (3.25), el coeficiente de viscosidad puede expresarse como sigue:


Así, la viscosidad de un fluido se define como la razón del esfuerzo cortante a la tasa del cortante durante el flujo, donde el esfuerzo cortante es la fuerza por fricción que el fluido ejerce por unidad de área, y la tasa del cortante es el gradiente de velocidad perpendicular a la dirección de flujo. Newton fue quien enunció primero las características de viscosidad de los fluidos definidas por la ecuación (3.26). Él observó que la viscosidad era una propiedad constante de un fluido dado, y un fluido de ese tipo se denomina fluido newtoniano. 

Las unidades del coeficiente de viscosidad requieren explicación. En el Sistema Internacional de Unidades (SI), debido a que el esfuerzo cortante se expresa en N/m2 o Pascales, y la tasa del cortante en 1/s, sigue que h tiene unidades de N-s/m2 o Pascal-segundo, que se abrevia Pa-s. En el sistema de unidades tradicional de Estados Unidos, las unidades correspondientes son lb/in2 y 1/s, de modo que las unidades del coeficiente de viscosidad están en lb-s/in2 . Otra unidad que a veces se emplea para la viscosidad es el poise, que es = dina-s/cm2 (10 poises = 1 Pas y 6 895 Pas = 1 lb-s/in2 ). En la tabla 3.9 se dan algunos valores comunes del coeficiente de viscosidad para distintos fluidos. Se observa que la viscosidad de varios materiales de los que se mencionan varía con la temperatura.

La viscosidad en los procesos de manufactura Para muchos metales, la viscosidad en el estado fundido se compara a la del agua a la temperatura ambiente. Ciertos procesos de manufactura, en especial la fundición y soldadura autógena, se llevan a cabo sobre metales en estado fundido, y el éxito de esas operaciones requiere viscosidad baja para que el metal fundido llene la cavidad del molde o suelde la costura antes de solidificarse. En otras operaciones, como la forja y maquinado de metal, se emplean lubricantes y enfriadores durante el proceso, y, de nuevo, el éxito de esos fluidos depende hasta cierto punto de sus viscosidades. 

Las cerámicas vidriadas muestran una transición gradual de los estados sólidos a los líquidos conforme la temperatura aumenta; no se funden en forma súbita, como sí lo hacen los metales. En la tabla 3.9 se ilustra ese efecto por medio de los valores de la viscosidad del vidrio a temperaturas diferentes. A temperatura ambiente, el vidrio es sólido y frágil, no presenta tendencia a fluir; para todo propósito práctico, su viscosidad es infinita. Conforme se calienta, el vidrio se suaviza en forma gradual, y se hace cada vez menos viscoso (más y más fluido), hasta que al final puede dársele forma por medio del soplado o moldeo, a alrededor de 1 100 ºC (2 000 ºF).


La mayoría de procesos para dar forma a los polímeros se realizan a temperaturas elevadas, cuando el material está en una condición líquida o muy plástica. Los polímeros termoplásticos representan el caso más claro, y constituyen también la mayoría de polímeros comunes. A temperaturas bajas, los polímeros termoplásticos son sólidos; conforme la temperatura aumenta, lo normal es que primero se transformen en un material suave parecido al caucho, y después en un fluido espeso. Al continuar elevándose la temperatura, la viscosidad disminuye en forma gradual, como se indica en la tabla 3.9 para el polietileno, el polímero termoplástico de uso más extendido. Sin embargo, con los polímeros la relación se complica por otros factores. Por ejemplo, la viscosidad se ve afectada por el gasto. La viscosidad de un polímero termoplástico no es constante. Un polímero fundido no se comporta como un líquido newtoniano. En la figura 3.18 puede verse su relación entre el esfuerzo cortante y la tasa cortante. Un fluido que presente esta viscosidad decreciente con tasa de cortante en aumento se llama seudoplástico. El comportamiento complica el análisis del moldeo del polímero.


Comentarios