CONTROL EN LAZO CERRADO EN COMPARACIÓN CON EL CONTROL EN LAZO ABIERTO

  CONTROL EN LAZO CERRADO EN COMPARACIÓN CON EL CONTROL EN LAZO ABIERTO


Los sistemas de control realimentados no se limitan a la ingeniería, sino que también se ’ encuentran en diversos campos ajenos a ella. Por ejemplo, el cuerpo humano es un sistema de control realimentado muy avanzado.Tanto la temperatura corporal como la presión sanguínea se conservan constantes mediante una realimentación fisiológica. De hecho, la realimentación realiza una función vital: vuelve el cuerpo humano relativamente insensible a las perturbaciones externas, por lo cual lo habilita para funcionar en forma adecuada en un ambiente cambiante. 

Sistemas de control en lazo cerrado. Los sistemas de control realimentados se denominan también sistemas de control en lazo cerrado. En la práctica, los términos control realimentado y control en lazo cerrado se usan indistintamente. En un sistema de control en lazo cerrado, se alimenta al controlador la señal de error de actuación, que es la diferencia entre la señal de entrada y la señal de realimentación (que puede ser la señal de salida misma o una función de la señal de salida y sus derivadas y/o integrales), a fin de reducir el error y llevar la salida del sistema a un valor conveniente. El término control en lazo cerrado siempre implica el uso de una acción de control realimentado para reducir el error del sistema. 

Sistemas de control en lazo abierto. Los sistemas en los cuales la salida no afecta la acción de control se denominan sistemas de control en lazo abierto. En otras palabras, en un sistema de control en lazo abierto no se mide la salida ni se realimenta para compararla con la entrada. Un ejemplo practico es una lavadora. El remojo, el lavado y el enjuague en la lavadora operan con una base de tiempo. La máquina no mide la señal de salida, que es la limpieza de la ropa. En cualquier sistema de control en lazo abierto, la salida no se compara con la entrada de referencia. Por tanto, a cada entrada de referencia le corresponde una condición operativa fija; como resultado, la precisión del sistema depende de la calibración. Ante la presencia de perturbaciones, un sistema de control en lazo abierto no realiza la tarea deseada. En ia práctica, el control en lazo abierto sólo se usa si se conoce la relación entre la entrada y la salida y si no hay perturbaciones internas ni externas. Es evidente que estos sistemas no son de control realimentado. Observe que cualquier sistema de control que opere con una base de tiempo es en lazo abierto. Por ejemplo, el control del tránsito mediante señales operadas con una base de tiempo es otro ejemplo de control en lazo abierto.

Sistemas de control en lazo cerrado en comparación con los sistemas en lazo abierto. 
Una ventaja del sistema de control en lazo cerrado es que el uso de la realimentación vuelve la respuesta del sistema relativamente insensible a las perturbaciones externas y a las variaciones internas en los parámetros del sistema. Por tanto, es posible usar componentes relativamente precisos y baratos para obtener el control adecuado de una planta determinada, en tanto que hacer eso es imposible en el caso de un sistema en lazo abierto. Desde el punto de vista de la estabilidad, el sistema de control en lazo abierto es más fácil de desarrollar, porque la estabilidad del sistema no es un problema importante. Por otra parte, la estabilidad es una función principal en el sistema de control en lazo cerrado, lo cual puede conducir a corregir en exceso errores que producen oscilaciones de amplitud constante o cambiante.

Debe señalarse que, para los sistemas en los que se conocen con anticipación las entradas y en los cuales no hay perturbaciones, es aconsejable emplear un control en lazo abierto. Los sistemas de control en lazo cerrado sólo tienen ventajas cuando se presentan perturbaciones impredecibles y/o variaciones impredecibles en los componentes del sistema. Observe que la valoración de la energía de salida determina en forma parcial el costo, el peso y el tamaño de un sistema de control. La cantidad de componentes usados en un sistema de control en lazo cerrado es mayor que la que se emplea para un sistema de control equivalente en lazo abierto. Por tanto, el sistema de control en lazo cerrado suele tener costos y potencias más grandes. Para disminuir la energía requerida de un sistema, se emplea un control en lazo abierto cuando puede aplicarse. Por lo general, una combinación adecuada de controles en lazo abierto y en lazo cerrado es menos costosa y ofrecerá un desempeño satisfactorio del sistema general.

DISEÑO DE LOS SISTEMAS DE CONTROL

Los sistemas de control actuales son, por lo general, no lineales. Sin embargo, si es posible aproximarlos mediante modelos matemáticos lineales, podemos usar uno o más métodos de diseño bien desarrollados. En un sentido práctico, las especificaciones de desempeño determinadas para el sistema particular sugieren cuál método usar. Si se presentan las especificaciones de desempeño en términos de las características de respuesta transitoria y/o las medidas de desempeño en el dominio de la frecuencia, no tenemos otra opción que usar un enfoque convencional basado en los métodos del lugar geométrico de las raíces y/o la respuesta en frecuencia.

En tanto que el diseño de un sistema de control mediante los enfoques del lugar geométrico de las raíces y de la respuesta en frecuencia es una tarea de la ingenierfa, el diseño del sistema en el contexto de la teoría de control moderna (métodos en el espacio de estados) emplea formulaciones matemáticas del problema y aplica la teoría matemática para diseñar los problemas en los que el sistema puede tener entradas y salidas múltiples y ser variantes con el tiempo. Aplicando la teoría de control moderna, el diseñador puede iniciar a partir de un índice de desempeño, junto con las restricciones impuestas en el sistema, y avanzar para disefíar un sistema estable mediante un procedimiento completamente analítico. La ventaja del diseño basado en la teoría de control moderna es que permite al diseñador producir un sistema de control óptimo en relación con el índice de desempeño considerado.

Los sistemas que pueden diseñarse mediante un enfoque convencional están por lo general limitados a una entrada y una salida, y son lineales e invariantes con el tiempo. El diseñador busca satisfacer todas las especificaciones de desempeño mediante la repetición estudiada de prueba y error. Después de diseñar un sistema, el diseñador verifica si satisface todas las especificaciones de desempeño. Si no las cumple, repite el proceso de diseño ajustando los parámetros o modificando la configuración del sistema hasta que se cumplan las especificaciones determinadas.Aunque el diseño se basa en un procedimiento de prueba y error, el ingenio y los conocimientos del diseñador cumplen una función importante en un diseño exitoso. Un diseñador experimentado será capaz de diseñar un sistema aceptable sin realizar muchas pruebas.

Por lo general, es conveniente que el sistema diseñado exhiba la menor cantidad posible de errores, en respuesta a la señal de entrada. A este respecto, debe ser razonable el amortiguamiento del sistema. La dinámica del sistema debe ser relativamente insensible a variaciones pequeñas en sus parámetros. Las perturbaciones no deseadas deben estar bien atenuadas. [En general, la parte de alta frecuencia debe atenuarse rápido para que puedan atenuarse los ruidos de alta frecuencia (como ruidos de los sensores). Si se conoce el ruido o las frecuencias de perturbación, pueden usarse filtros de ranura para atenuar estas frecuencias específicas.] Si el diseño del sistema se reduce a unos cuantos candidatos, puede hacerse una elección óptima entre ellos a partir de consideraciones como el desempeño general proyectado, el costo, el espacio y el peso.



Comentarios