LA MEDIDA SIN CONTACTO
La gran ventaja de la medición óptica es su rapidez. Cada vez es más importante reducir los tiempos de medición para poder reducir los costes y acortar los plazos de entrega para poder dar una respuesta rápida. Estos sistemas permiten medir en 2D, 3D y con software de medición (COSMOS) o comparativa CAD (Metrolog, PCDMIS o software propio de los fabricantes). Los digitalizados en 2D se consiguen con una gran precisión y rapidez, de forma automática, por que la máquina se encarga de reconocer el contorno y reseguirlo sin ninguna ayuda del metrólogo.
Otra ventaja importante es que permiten medir piezas de tamaño muy reducido con gran precisión y comodidad. Su tecnología, que por el momento ofrece todavía algunas dudas respecto a la medición en 3D, se está comparando con la fotogrametría, el escáner láser y la luz blanca, que son otras tecnologías que ya funcionan muy bien. Por el momento se ha optado por instalar en los sistemas de visión, sondas TP2 de contacto, para complementar las mediciones 3D.
Un sistema óptico activo siempre consta, como mínimo, de 2 elementos en el cabezal de medida: un emisor de luz y un receptor, estos están separados entre sí en una distancia d conocida y forman entre sí unos ángulos determinados. El sistema emite luz hacia la superficie que se pretende medir y ésta la refleja, llegando parte de esta reflexión al receptor. Conociendo la dirección del rayo emitido y la del rayo recibido se pueden resolver las dimensiones del triángulo formado y, por tanto, obtener la profundidad del punto inspeccionado. La principal ventaja de estos sistemas es que la medición se realiza sobre la superficie misma de la pieza y no necesita, compensación de radio.
El escáner con luz blanca
El escáner por haz de luz Blanca, y escáner láser. Ambos sistemas, aunque utilizan una tecnología diferente, están basados en la reflexión de la luz sobre la pieza. Se proyecta un haz de luz, éste se refleja en la pieza y vuelve al lector del scanner. Y en ese momento, el lector captura la luz y establece la coordenada del punto en donde se ha reflejado la luz. (A grandes rasgos).
La principal ventaja es que pueden digitalizar un área completa sin mover ningún cabezal y obtener en una sola captura más de un millón de puntos situados sobre la superficie de la pieza. Su precisión es similar a la del láser, pero no podemos ver lo que estamos escaneando en tiempo real. Según vamos sacando fotografías debemos ir alineándolas mediante software para comprobar que estamos digitalizando correctamente.
Aplicaciones
Escáner 3D de luz blanca estructurada SIDIOPro de nub3d
El escáner 3D SIDIO Pro permite la medición de superficies en 3D para dar soporte a los procesos
de diseño e ingeniería inversa, control de calidad e inspección.
Dispone de una nueva tecnología de proyección, basada en su totalidad en componentes digitales,
que reduce el tiempo de adquisición de datos convirtiéndolo en el escáner más rápido del mercado
en esta gama de resolución, según señala la empresa.
Entre sus ventajas destacan el poder digitalizar sin necesidad de marcas físicas sobre la pieza y una
nueva tecnología de proyección que permite la digitalización de chapa sin spray. Esto lo hace ideal
para su utilización en sectores como chapa, estampación, fundición, etc.
El software incluye librerías para integración con robots, fácilmente programables y adaptables a las necesidades del cliente e integración con el software líder en el campo de la inspección a partir de nubes de puntos, Polyworks/Inspector.
Los escáneres láser juegan un papel clave en la garantía de calidad. La captura digital 3D de formas y superficies utilizando láseres es un proceso muy preciso y que no requiere esfuerzo. Un escáner 3D puede acoplarse rápida y fácilmente como un sensor a un brazo de medición o puede trabajar con la máxima precisión como parte de un sistema Laser Tracker o una máquina de medición de coordenadas fija. El software genera datos 3D en tiempo real a partir de la nube de puntos creada por el escáner y reconoce inmediatamente las desviaciones respecto a los datos CAD.
Los escáneres láser comprueban si un objeto de medición se corresponde con sus valores nominales. Las áreas de aplicación son muy amplias: control de entrada de piezas de proveedores, comprobación de moldes y herramientas o mediciones de contorno son solo algunas de las típicas aplicaciones en la industria. La mayoría de aplicaciones están enfocadas a la inspección y el control, pero también la ingeniería inversa es un importante ámbito de aplicación de los escáneres láser.
Uso de Láser Tracker en el sector Aeronáutico Una de las principales características constructivas del sector aeronáutico está relacionada con las grandes dimensiones que tienen incluso las aeronaves de capacidad reducida. Este hecho obliga a las empresas de esta industria a disponer de unas infraestructuras dimensionadas de forma que puedan manipularse conjuntos de gran volumen. En fase de producción se requiere maquinaria capaz de alojar grandes piezas e incluso en la fase de montaje las gradas y útiles utilizados llegan a tener dimensiones superiores a las de las alas o el fuselaje de la aeronave que se está fabricando. Este hecho dificulta el cumplimiento de los rigurosos estándares de calidad y efectivamente el mayor reto consiste no solamente en la fabricación propiamente dicha de los conjuntos y los útiles necesarios para su montaje, sino en el control dimensional y alineación del conjunto.
Otra aplicación importante se encuentra en la puesta a punto de líneas de montaje. Al igual que en el sector automoción, la automatización del proceso de montaje puede verse en cada vez mas ocasiones debido al creciente volumen de producción de aeronaves y a la fuerte necesidad de generación de economías de escala.
Dado que en el sector del automóvil hay una constante presión par reducir costes y tiempos (que viene a ser lo mismo…) la metrología y los útiles de control no se escapan a esta tendencia. La metrología dimensional y el control de calidad siempre han estado presentes en la cadena de producción industrial, y en el caso del automóvil las exigencias en este campo se han llevado siempre al límite de lo que nos permite la tecnología en cada momento.
En los últimos años hemos visto evolucionar el software de medición a pasos agigantados, para mejorar la captación de datos, lectura de ficheros y geometrías, mejorar la usabilidad del software, reducir los tiempos de formación y aprendizaje, automatizar los procesos de medición mediante programación CNC, calibración automática de palpadores y un largo etcétera de aspectos que han mejorado notablemente los tiempos muertos no productivos. Incluso algunos paquetes de CAD, como Catia V5R10 han incorporado un módulo que permiten la interconexión directa con software de metrología para facilitar la programación off-line.
Paralelamente, con la introducción de sensores y tecnologías de medición sin contacto, llamada metrología virtual, que permiten la toma de nubes de puntos mediante sensores CCD, tecnologías láser, luz blanca, escaneado ó fotogrametría y que permiten nuevas prestaciones inalcanzables por los sistemas tradicionales que cubren áreas donde las CMM no podían llegar. El software y el hardware han tenido que mejorar mucho para poder tratar estas nubes de puntos sin dificultad. El tratamiento digital de geometrías es denominado DSSP.
Comentarios
Publicar un comentario